

RADIO TEST REPORT

REPORT NO.: RE140718E03

- MODEL NO.: ECW5320, ECW5320-L, ECW5320-C, ECW3320, ECW3320-L, ECW3320-C, SS-N300-EU, SS-AC1200-EU
- **RECEIVED:** July 01, 2014
 - **TESTED:** July 01 to Aug. 12, 2014
 - **ISSUED:** Aug. 28, 2014
- **APPLICANT:** Accton Technology Corporation
 - ADDRESS: No.1, Creation Rd. III, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.
- **ISSUED BY:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
- LAB ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling,Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification

Table of Contents

RELE	ASE CONTROL RECORD	5
1	CERTIFICATION	
2	SUMMARY OF TEST RESULTS	7
2.1	TEST INSTRUMENTS	
2.2	MEASUREMENT UNCERTAINTY	
2.3	MAXIMUM MEASUREMENT UNCERTAINTY	. 13
3	GENERAL INFORMATION	. 14
3.1	GENERAL DESCRIPTION OF EUT	14
3.2	DESCRIPTION OF TEST MODES	
3.3	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	. 18
3.4	GENERAL DESCRIPTION OF APPLIED STANDARDS	. 26
3.5	DESCRIPTION OF SUPPORT UNITS	
3.6	CONFIGURATION OF SYSTEM UNDER TEST	. 28
4	TEST PROCEDURES AND RESULTS (for 2.4GHz)	. 29
TRANS	SMITTER PARAMETERS	. 29
4.1	RF OUTPUT POWER	. 29
4.1.1	LIMITS OF RF OUTPUT POWER	. 29
4.1.2	TEST PROCEDURE	
4.1.3	DEVIATION FROM TEST STANDARD	. 29
4.1.4	TEST SETUP	. 29
4.1.5	TEST RESULTS	. 30
4.2	POWER SPECTRAL DENSITY	. 31
4.2.1	LIMIT OF POWER SPECTRAL DENSITY	
4.2.2	TEST PROCEDURE	
4.2.3	DEVIATION FROM TEST STANDARD	. 31
4.2.4	TEST SETUP	. 31
4.2.5	TEST RESULTS	
4.3	OCCUPIED CHANNEL BANDWIDTH	
4.3.1	LIMIT OF OCCUPIED CHANNEL BANDWIDTH	
4.3.2	TEST PROCEDURE	
4.3.3	DEVIATION FROM TEST STANDARD	
4.3.4	TEST SETUP	
	TEST RESULTS	-
4.4	TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN	
4.4.1		
4.4.0		. 35
4.4.2		
4.4.3	DEVIATION FROM TEST STANDARD	
4.4.4	TEST SETUP	
4.4.5		
4.5	ADAPTIVITY (CHANNEL ACCESS MECHANISM)	
	TEST PROCEDURE TEST SETUP CONFIGURATION	. 39
4.5.2		
4.5.3	LIST OF MEASUREMENTS INTERFERENCE THRESHOLD LEVEL	
4.3.4		. 41

155	TEST RESULT	
4551	1 ADAPTIVE RESULT	
4.0.0.	2THE CHANNEL OCCUPANCY TIME RESULT	<u>۲</u> ۲
	3SHORT CONTROL SIGNALLING TRANSMISSIONS RESULT	
4.6	TRANSMITTER SPURIOUS EMISSIONS	
4.6.1	LIMITS OF TRANSMITTER SPURIOUS EMISSIONS	
4.6.2	TEST PROCEDURE	
4.6.3	DEVIATION FROM TEST STANDARD	
4.6.4	TEST SETUP	
4.6.5	TEST SETUP	
	VER PARAMETERS	
	RECEIVER SPURIOUS RADIATION	
4.7		
4.7.1	LIMITS OF RECEIVER SPURIOUS RADIATION	
4.7.2		
4.7.3	DEVIATION FROM TEST STANDARD	
4.7.4	TEST SETUP	
4.7.5	TEST RESULTS	
4.8	RECEIVER BLOCKING	
4.8.1	LIMITS OF RECEIVER BLOCKING	
4.8.2	TEST PROCEDURE	
4.8.3	DEVIATION FROM TEST STANDARD	
4.8.4	TEST SETUP CONFIGURATION	
4.8.5	TEST RESULT	58
5	TEST PROCEDURES AND RESULTS (for 5GHz)	59
TRANS	SMITTER PARAMETERS	
5.1	CENTRE FREQUENCIES	
5.1.1	LIMITS OF CENTRE FREQUENCIES	59
5.1.2	TEST PROCEDURE	
5.1.3	DEVIATION FROM TEST STANDARD	
5.1.4	TEST SETUP	
5.1.5	TEST RESULTS	
5.2	NOMINAL AND OCCUPIED CHANNEL BANDWIDTH	61
5.2.1	LIMITS OF NOMINAL AND OCCUPIED CHANNEL BANDWIDTH	61
-	TEST PROCEDURE	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
	TEST RESULTS	
5.3	RF OUTPUT POWER	
5.3.1	LIMITS OF RF OUTPUT POWER	63
5.3.2	TEST PROCEDURE	
5.3.3	DEVIATION FROM TEST STANDARD	
5.3.4	TEST SETUP	
5.3.5	TEST RESULTS FOR RF OUTPUT POWER	
5.3.5 5.4	POWER DENSITY	
	LIMITS OF POWER DENSITY	00 66
	TEST PROCEDURE	
	DEVIATION FROM TEST STANDARD	
	TEST SETUP	
0.4.4		

5.4.5	TEST RESULTS	67
5.4.5 5.5	ADAPTIVITY (CHANNEL ACCESS MECHANISM)	60
5.5.1 5.5.2	TEST PROCEDURE TEST SETUP CONFIGURATION	
5.5.3	LIST OF MEASUREMENTS INTERFERENCE THRESHOLD LEVEL	70
5.5.4		
5.5.5	TEST RESULT I ADAPTIVITY RESULT	12
5.5.5.1	2THE CHANNEL OCCUPANCY TIME RESULT	72
	SHORT CONTROL SIGNALLING TRANSMISSIONS RESULT	
5.6	USER ACCESS RESTRICTIONS	
5.6.1		75
5.6.2	REQUIREMENT TRANSMITTER UNWANTED EMISSIONS OUTSIDE THE HIPERLAN BANDS	15
5.7		
5.7.1	LIMITS OF UNWANTED EMISSIONS OUTSIDE THE HIPERLAN BANDS	
5.7.2		//
5.7.3	DEVIATION FROM TEST STANDARD	
5.7.4	TEST SETUP	
5.7.5	TEST RESULTS	
5.8	TRANSMITTER UNWANTED EMISSIONS WITHIN THE HIPERLAN BANDS	
5.8.1	LIMITS OF UNWANTED EMISSIONS WITHIN THE HIPERLAN BANDS	
5.8.2	TEST PROCEDURE	
5.8.3	DEVIATION FROM TEST STANDARD	
5.8.4	TEST SETUP	
	TEST RESULTS	
	VER PARAMETERS	
5.9	RECEIVER SPURIOUS EMISSION	
5.9.1	LIMITS OF RECEIVER SPURIOUS EMISSION	
5.9.2	TEST PROCEDURE	
5.9.3	DEVIATION FROM TEST STANDARD	
5.9.4	TEST SETUP	
5.9.5	TEST RESULTS	
6	PHOTOGRAPHS OF THE TEST CONFIGURATION	
7	INFORMATION ON THE TESTING LABORATORIES	92

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RE140718E03	Original release	Aug. 28, 2014

1 CERTIFICATION

PRODUCT:	802.11ac Dual-Band Wireless Access Point,
	802.11b/g/n Wireless Access Point,
	2.4G eiling/Wall/Desktop Enterprise AP,
	Dualband Ceiling/Wall/Desktop Enterprise AP (802.11ac)
BRAND NAME:	Edge-corE, IgniteNet
MODEL NO:	ECW5320, ECW5320-L, ECW5320-C, ECW3320,
	ECW3320-L, ECW3320-C, SS-N300-EU, SS-AC1200-EU
TEST SAMPLE:	ENGINEERING SAMPLE
APPLICANT:	Accton Technology Corporation
TESTED:	July 01 to Aug. 12, 2014
STANDARDS:	EN 300 328 V1.8.1 (2012-06)
	EN 301 893 V1.7.1 (2012-06)

The above equipment (Model: SS-AC1200-EU) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY	:, DATE: <u>Aug. 28, 2014</u> (Midoli Peng, Specialist)
APPROVED BY	:, DATE: <u>Aug. 28, 2014</u> (May Chen, Manager)

2 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

EN 300 328 V1.8.1					
Clause	Test Parameter	Results			
	TRANSMITTER PARAMETERS				
4.3.1.1 or 4.3.2.1	RF Output Power	Pass			
4.3.2.2	Power Spectral Density (Modulations other than FHSS equipment)	Pass			
4.3.1.2 or 4.3.2.3	Duty cycle, Tx-Sequence, Tx-gap (Non-adaptive equipment)	Not Applicable			
4.3.1.3	Dwell time, Minimum Frequency				
4.3.1.4	.4 Hopping Frequency Separation (FHSS equipment) Not Applic				
4.3.1.5 or 4.3.2.4	Medium Utilisation (Non-adaptive equipment)	Not Applicable			
4.3.1.6 or 4.3.2.5	Adaptivity (Adaptive equipment)	Pass			
4.3.1.7 or 4.3.2.6	Occupied Channel Bandwidth	Pass			
4.3.1.8 or 4.3.2.7	Transmitter unwanted emission in the Pass				
4.3.1.9 or 4.3.2.8	Transmitter unwanted emissions in the Pass				
RECEIVER PARAMETERS					
4.3.1.10 or 4.3.2.9	Receiver Spurious Emissions	Pass			
4.3.1.11 or 4.3.2.10	Receiver Blocking (Only for adaptive equipment)	Pass			

EN 301 893 V1.7.1				
Clause	Test Parameter	Results		
	TRANSMITTER PARAMETERS			
4.2	Centre Frequencies	Pass		
4.3	Nominal and Occupied Channel Bandwidth	Pass		
4.4	Transmitter Power Control	Not Applicable		
4.4	RF Output Power	Pass		
4.4	Power Density Pass			
4.9	Adaptivity (Channel Access Mechanism) Pass			
4.10	User Access Restrictions Pass			
4.5.1	Transmitter unwanted emissions outside the HIPERLAN bands Pass			
4.5.2	.2 Transmitter unwanted emissions within the Pass			
4.7	4.7 Dynamic Frequency Selection Not Applica			
	RECEIVER PARAMETERS			
4.6	Spurious Emissions	Pass		

2.1 TEST INSTRUMENTS

For 2.4GHz: 2TX/RX Spurious Emissions below 1GHz & 1TX/2TX Spurious Emissions above 1GHz test:

For 5GHz: 2TX/RX Spurious Emissions below 1GHz test:

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP 40	100060	May 08, 2014	May 07, 2015
Pre_Amplifier Mini-Circuits	ZFL-1000VH2	QA0838008	Nov. 13, 2013	Nov. 12, 2014
Pre_Amplifier HP	8449B	3008A01281	Jan. 18, 2014	Jan. 17, 2015
TRILOG Antenna SCHWARZBECK	VULB 9168	9168-406	Mar. 03, 2014	Mar. 02, 2015
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	May 09, 2014	May 08, 2015
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V7.6.15.9.4	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA
Power meter Anritsu	ML2495A	1014008	Apr. 30, 2014	Apr. 29, 2015
Power sensor Anritsu	MA2411B	0917122	Apr. 30, 2014	Apr. 29, 2015
ESG Vector signal generator Agilent	E4438C	MY47271330 506 602 UNJ	Apr. 28, 2014	Apr. 27, 2015

NOTE: 1. The test was performed in RF Chamber No. C.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: Aug. 05, 2014

For 2.4GHz: 1TX Spurious Emissions below 1GHz & RX Spurious Emissions above 1GHz test: For 5GHz: 1TX Spurious Emissions below 1GHz test & 1TX/2TX Spurious Emission above 1GHz test:

51.				
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP 40	100060	May 08, 2014	May 07, 2015
Pre_Amplifier Juniper	8447D	2944A10626	Feb. 22, 2014	Feb. 21, 2015
Pre_Amplifier HP	8449B	3008A01922	Sep. 21, 2013	Sep. 20, 2014
TRILOG Antenna SCHWARZBECK	VULB9168	138	Feb. 27, 2014	Feb. 26, 2015
Horn_Antenna SCHWARZBECK	BBHA9120-D1	D124	Dec. 06, 2013	Dec. 05, 2014
Horn_Antenna SCHWARZBECK	BBHA 9170	9170-424	Oct. 08, 2013	Oct. 07, 2014
Software	ADT_Radiated _V7.6.15.9.4	NA	NA	NA
Antenna Tower & Turn Table CT	NA	NA	NA	NA
Power meter Anritsu	ML2495A	1014008	Apr. 30, 2014	Apr. 29, 2015
Power sensor Anritsu	MA2411B	0917122	Apr. 30, 2014	Apr. 29, 2015
ESG Vector signal generator Agilent	E4438C	MY47271330 506 602 UNJ	Apr. 28, 2014	Apr. 27, 2015
POWER SPLITTER Mini-Circuits	ZN2PD-9G-S+	SF038700723-2	Aug. 15, 2013	Aug. 14, 2014
POWER SPLITTER Mini-Circuits	ZN2PD-9G-S+	SF038700723-3	Aug. 15, 2013	Aug. 14, 2014

NOTE: 1. The test was performed in RF Chamber No. E.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: Aug. 12, 2014

For other test items:				
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Spectrum Analyzer R&S	FSP 40	100037	Oct. 31, 2013	Oct. 30, 2014
Spectrum Analyzer Agilent	E4446A	MY48250253	Aug. 28, 2013	Aug. 27, 2014
AC Power Source EXTECH Electronics	6502	1140503	NA	NA
Temperature & Humidity Chamber TERCHY	MHU-225AU	911033	Dec. 09, 2013	Dec. 08, 2014
DC Power Supply GOOD WILL INSTRUMENT CO., LTD.	GPC - 3030D	7700087	NA	NA
ESG Vector signal generator Agilent	E4438C	MY47271330 506 602 UNJ	Apr. 28, 2014	Apr. 27, 2015
Upgrade the software license on current E4438C ESG Agilent	E4438CK-403	ESG E4_010004	NA	NA
ESG Vector signal generator Agilent	E4438C	MY45094468/0 05 506 602 UK6 UNJ	Dec. 06, 2013	Dec. 05, 2014
Upgrade the software license on current E4438C ESG Agilent	E4438CK-403	ESG E4_010001	NA	NA
Power meter Anritsu	ML2495A	0824006	May 22, 2014	May 21, 2015
Power sensor Anritsu	MA2411B	0738172	May 22, 2014	May 21, 2015
Power meter Anritsu	ML2495A	1014008	Apr. 30, 2014	Apr. 29, 2015
Power sensor Anritsu	MA2411B	0917122	Apr. 30, 2014	Apr. 29, 2015
Software	Total Power Measurement Tools V7.1	NA	NA	NA
Software	ADT_RF Test Software V6.6.5.3	NA	NA	NA

NOTE: 1. The test was performed in Oven room A.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: July 01 to Aug. 11, 2014

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

EN 300 328	
Parameter	Uncertainty
Occupied Channel Bandwidth	±1.132x10 ⁻⁴ %
RF output power, conducted	±1.017dB
Power Spectral Density, conducted	±1.017dB
Unwanted Emissions, conducted	±2.855dB
All emissions, radiated	±2.855dB
Temperature	±0.7°C
Humidity	±2.5%
DC and low frequency voltages	±0.04%
Time	±5 %
Duty Cycle	±5 %

EN 301 893

Parameter	Uncertainty
RF frequency	±1.132x10 ⁻⁶
RF power conducted	±1.017dB
RF power radiated	±2.855dB
Spurious emissions, conducted	±1.68dB
Spurious emissions, radiated	±2.855dB
Humidity	±2.5%
Temperature	±0.7°C
Time	±3%

2.3 MAXIMUM MEASUREMENT UNCERTAINTY

For the test methods, according to ETSI EN 300 328 standard, the measurement uncertainty figures shall be calculated in accordance with ETR 100 028-1 [4] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Parameter	Uncertainty
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1,5 dB
Power Spectral Density, conducted	±3 dB
Unwanted Emissions, conducted	±3 dB
All emissions, radiated	±6 dB
Temperature	±1 °C
Humidity	±5 %
DC and low frequency voltages	±3 %
Time	±5 %
Duty Cycle	±5 %

Maximum measurement uncertainty

For the test methods, according to ETSI EN 301 893 standard, the measurement uncertainty figures shall be calculated in accordance with TR 100 028-1 [2] and TR 100 028-2 [3] and shall correspond to an expansion factor (coverage factor) k = 1,96 or k = 2 (which provide confidence levels of respectively 95 % and 95,45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian)).

Parameter	Uncertainty
RF frequency	±1x10 ⁻⁵
RF power conducted	±1,5 dB
RF power radiated	±6 dB
Spurious emissions, conducted	±3 dB
Spurious emissions, radiated	±6 dB
Humidity	±5 %
Temperature	±1°C
Time	±10 %

Maximum measurement uncertainty

3 GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

.1 GENERAL DESCRIPTION				
PRODUCT	 802.11ac Dual-Band Wireless Access Point, 802.11b/g/n Wireless Access Point, 2.4G Ceiling/Wall/Desktop Enterprise AP, Dualband Ceiling/Wall/Desktop Enterprise AP (802.11ac) 			
MODEL NO.	ECW5320, ECW5320-L, ECW5320-C, ECW3320, ECW3320-L, ECW3320-C, SS-N300-EU, SS-AC1200-EU			
TYPE OF THE EQUIPMENT	Stand-alone			
NOMINAL VOLTAGE	DC12V from power adapter or DC 48V from PoE			
EXTREME/NORMAL TESTING VOLTAGES	Vnom= 230Vac Vmin= 207Vac Vmax= 253Vac			
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM 256QAM for OFDM in 11ac mode only.			
MODULATION TECHNOLOGY	DSSS,OFDM			
TRANSFER RATE	802.11b: up to 11Mbps 802.11a/g: up to 54Mbps			
OPERATING FREQUENCY	For 2.4GHz: 2412MHz ~ 2472MHz For 5GHz: 5180MHz ~5240MHz			
NUMBER OF CHANNEL	For 2.4GHz: 802.11b/g, 802.11n (HT20): 13 802.11n (HT40) : 9 For 5GHz : 802.11a, 802.11n (HT20) , 802.11ac (VHT20): 4 802.11n (HT40) , 802.11ac (VHT40): 2 802.11ac (VHT80): 1			
ADAPTIVE/NON-ADAPTIVE	Adaptive equipment without the possibility to switch to a non-adaptive mode			
EIRP POWER	For 2.4GHz: 19.90dBm			
(Measured Max. Average)	For 5GHz: 22.70dBm			
TEMPERATURE RANGE	0°C ~ 40°C			
ANTENNA TYPE	Please see NOTE			
DATA CABLE	NA			
I/O PORTS	Refer to user's manual			

Note:

- 1. 2.4GHz and 5GHz technology can transmit at same time.
- 2. The emission of the simultaneous operation (2.4GHz & 5GHz) has been evaluated and no non-compliance was found.
- 3. The EUT has two brand names, four product names and eight model names, which are identical to each other in all aspects except for the following:

Brand	Product Name	Model Name	Radio 2.4G	Radio 5G	Software
	802.11b/g/n Wireless Access Point	ECW3320			Fat
		ECW3320-L	Support	Non-Support	Fit
		ECW3320-C			Fit
Edge-corE	E 802.11ac Dual-Band Wireless Access Point	ECW5320	Support	Support	Fat
		ECW5320-L			Fit
		ECW5320-C			Fit
	2.4G Ceiling/Wall/Desktop Enterprise AP	SS-N300-EU	Support	Non-Support	Fat
IgniteNet	Dualband Ceiling/Wall/Desktop Enterprise AP (802.11ac)	SS-AC1200-EU	Support	Support	Fat

From the above models, model: **SS-AC1200-EU** was selected as representative model for the test and its data were recorded in this report.

4. The antennas provided to the EUT, please refer to the following table:

	For 2.4G WLAN used					
Set	Transmitter Circuit	Antenna Gain(dBi) <including cable<br="">loss></including>	Frequency range (MHz ~ MHz)	Antenna Type	Connecter Type	Cable Length (mm)
1	Chain (0)	3.16	2400~2500	PCB Dipole	IPEX	255 (Gray)
I	Chain (1)	4.04	2400~2500		IPEA	150 (Blue)
	For 5G WLAN used					
Set	Transmitter Circuit	Antenna Gain(dBi) <including cable<br="">loss></including>	Frequency range (MHz ~ MHz)	Antenna Type	Connecter Type	Cable Length (mm)
4	Chain (0)	5.07	5150~5850	PCB Dipole	MMCS	65 (White)
	Chain (1)	3.97	5150~5650			140 (Black)

5. The EUT must be supplied with a power adapter as following table:

Brand	Model No.	Spec.
Sunny	SYS1308-2412-W2E	Input: 100-240V, 1.0A, 50-60Hz Output: 12V, 2A DC power cable: 1.83m, unshielded

MODULATION MODE	DATA RATE (MCS)	DATA RATE (MCS) TX & RX CONFIGURATION	
802.11a	6 ~ 54Mbps	1TX (Diversity)	2RX
802.11b	1 ~ 11Mbps	1TX (Diversity)	2RX
802.11g	6 ~ 54Mbps	1TX (Diversity)	2RX
802.11n (HT20)	MCS 0~7	1TX (Diversity)	2RX
& 802.11n (HT40)	MCS 8~15	2TX	2RX
802.11ac (VHT20)	MCS0~8 (256QAM) Nss= 1	1TX (Diversity)	2RX
	MCS0~8 (256QAM) Nss= 2	2ТХ	2RX
802.11ac (VHT40) & 802.11ac (VHT80)	MCS0~9 (256QAM) Nss= 1	1TX (Diversity)	2RX
	MCS0~9 (256QAM) Nss= 2	2ТХ	2RX

6. The EUT incorporates a MIMO function without beamforming.

Note: The modulation and bandwidth are similar for 802.11n mode for 20MHz (40MHz) and 802.11ac mode for 20MHz (40MHz), therefore investigated worst case to representative mode in test report. (Final test mode refer section 3.3)

7. Test modes are presented in the report as below.

Pre-test Mode	Power Source
A	With Adapter
В	With PoE (PoE only test not sale)

Note: From the above pre-test modes, the worse spurious emission was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

8. The above EUT information was declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

For 2.4GHz

13 channels are provided for 802.11b, 802.11g, 802.11n (HT20):

Channel	Frequency	Channel	Frequency
1	2412 MHz	8	2447 MHz
2	2417 MHz	9	2452 MHz
3	2422 MHz	10	2457 MHz
4	2427 MHz	11	2462 MHz
5	2432 MHz	12	2467 MHz
6	2437 MHz	13	2472 MHz
7	2442 MHz		

9 channels are provided for 802.11n (HT40):

Channel	Frequency	Channel	Frequency
3	2422 MHz	8	2447 MHz
4	2427 MHz	9	2452 MHz
5	2432 MHz	10	2457 MHz
6	2437 MHz	11	2462 MHz
7	2442 MHz		

For 5GHz:

4 channels are provided to for 802.11a, 802.11n (HT20), 802.11ac (VHT20):

Channel	Frequency
36	5180 MHz
40	5200 MHz
44	5220 MHz
48	5240 MHz

2 channels are provided for 802.11n (HT40), 802.11ac (VHT40):

Channel	Frequency
38	5190 MHz
46	5230 MHz

1 channel is provided for 802.11ac (VHT80):

Channel	Frequency
42	5210 MHz

3.3 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

For 802.11b/g/n:

EUT		APPLICABLE TO											
CONFIGURE MODE		PSD	DC/TS/TG	DT/MFO/HS	HFS	MU	AD	осв	EOB	SE< 1G	SE³ 1G	RB	DESCRIPTION
-	\checkmark	\checkmark	-	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Where	ROP: RF Output Power	PSD: Peak Spectral Density		
	DC/TS/TG: Duty Cycle/ Tx-Sequence / Tx-gap	DT/MFO/HS: Dwell time/ Minimum Frequency Occupation/ Hopping Sequence		
	HFS: Hopping Frequency Separation	MU: Medium Utilisation		
	AD: Adaptivity (Channel Access Mechanism)	OCB: Occupied Channel Bandwidth		
	EOB: Transmitter unwanted emission in the SE<1G: Spurious Emissions below 1GHz out-of-band domain			
	SE ³ 1G: Spurious Emissions above 1GHz	RB: Receiver Blocking		
Note: Th	e EUT had been pre-tested on the positioned	of each 2 axis. The worst case was found when positioned on		

RF OUTPUT POWER TEST:

X-plane.

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	1, 7, 13	DSSS	DBPSK	1
802.11g	1 to 13	1, 7, 13	OFDM	BPSK	6
802.11n (HT20)	1 to 13	1, 7, 13	OFDM	BPSK	13
802.11n (HT40)	3 to 11	3, 7, 11	OFDM	BPSK	27

PEAK SPECTRAL DENSITY TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	1, 7, 13	DSSS	DBPSK	1
802.11g	1 to 13	1, 7, 13	OFDM	BPSK	6
802.11n (HT20)	1 to 13	1, 7, 13	OFDM	BPSK	13
802.11n (HT40)	3 to 11	3, 7, 11	OFDM	BPSK	27

ADAPTIVITY TEST:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
802.11b	1 to 13	1, 13	DSSS
802.11g	1 to 13	1, 13	OFDM
802.11n (HT20)	1 to 13	1, 13	OFDM
802.11n (HT40)	3 to 11	3, 11	OFDM

OCCUPIED CHANNEL BANDWIDTH TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	1, 13	DSSS	DBPSK	1
802.11g	1 to 13	1, 13	OFDM	BPSK	6
802.11n (HT20)	1 to 13	1, 13	OFDM	BPSK	13
802.11n (HT40)	3 to 11	3, 11	OFDM	BPSK	27

TRANSMITTER UNWANTED EMISSIOIN IN THE OUT-OF-BAND DOMAIN TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	1, 13	DSSS	DBPSK	1
802.11g	1 to 13	1, 13	OFDM	BPSK	6
802.11n (HT20)	1 to 13	1, 13	OFDM	BPSK	13
802.11n (HT40)	3 to 11	3, 11	OFDM	BPSK	27

Following channel(s) was (were) selected for the final test as listed below.

SPURIOUS EMISSIONS TEST (BELOW 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	13	DSSS	DBPSK	1
802.11n (HT20)	1 to 13	13	OFDM	BPSK	13
Receiver	1 to 13	13	-	-	-

Following channel(s) was (were) selected for the final test as listed below.

SPURIOUS EMISSIONS TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 13	1, 13	DSSS	DBPSK	1
802.11n (HT20)	1 to 13	1, 13	OFDM	BPSK	13
Receiver	1 to 13	1, 13	-	-	-

RECEIVER BLOCKING TEST:

\boxtimes	Following channel(s) was (we	e) selected for the final test as listed below.
-------------	------------------------------	---

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY
802.11b	1 to 13	1, 13	DSSS
802.11g	1 to 13	1, 13	OFDM
802.11n (HT20)	1 to 13	1, 13	OFDM
802.11n (HT40)	3 to 11	3, 11	OFDM

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (SYSTEM)	TESTED BY
ROP	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
PSD	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
AD	25deg. C, 60%RH	230Vac, 50Hz	Look Huang
ОСВ	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
EOB	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
05.40	29deg. C, 77%RH	230Vac, 50Hz	Denny Liu
SE<1G	29deg. C, 77%RH	230Vac, 50Hz	Chiashiang Lin
05340	25deg. C, 65%RH	230Vac, 50Hz	Nelson Teng
SE ³ 1G	22deg. C, 79%RH	230Vac, 50Hz	Denny Liu
RB	25deg. C, 60%RH	230Vac, 50Hz	Look Huang

For 802.11a/n/ac:

EUT							DECODURTION			
CONFIGURE MODE	CF	осв	ROP	TPC	PD	AD	SE<1G	SE ³ 1G	TSPM	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Where **CF**: Centre Frequency

ROP: RF output power

PD: Power Density

OCB: Nominal and Occupied Channel Bandwidth

TPC: Transmit Power Control

AD: Adaptivity (Channel Access Mechanism)

SE<1G: Spurious Emissions below 1GHz

TSPM: Transmit spectral power mask

SE³**1G:** Spurious Emissions above 1GHz

Note: The EUT had been pre-tested on the positioned of each 2 axis. The worst case was found when positioned on **X-plane**.

CENTRE FREQUENCIES:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL		MODULATION TECHNOLOGY		DATA RATE (Mbps)
802.11a	36 to 48	36	-	-	-

NOMINAL AND CHANNEL OCCUPIED BANDWIDTH MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11a	36 to 48	48	OFDM	BPSK	6
802.11n (HT20)	36 to 48	48	OFDM	BPSK	13
802.11n (HT40)	38 to 46	38	OFDM	BPSK	27
802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

RF OUTPUT POWER:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11a	36 to 48	36, 48	OFDM	BPSK	6
802.11n (HT20)	36 to 48	36, 48	OFDM	BPSK	13
802.11n (HT40)	38 to 46	38, 46	OFDM	BPSK	27
802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

Following channel(s) was (were) selected for the final test as listed below.

POWER DENSITY:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11a	36 to 48	36, 48	OFDM	BPSK	6
802.11n (HT20)	36 to 48	36, 48	OFDM	BPSK	13
802.11n (HT40)	38 to 46	38, 46	OFDM	BPSK	27
802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

Following channel(s) was (were) selected for the final test as listed below.

ADAPTIVITY TEST:

Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	
802.11ac (VHT80)	42	42	OFDM	

-

SPURIOUS EMISSIONS TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 - AVAILABLE TESTED MODULATION MODULATION DATA RATE MODE CHANNEL CHANNEL TECHNOLOGY TYPE (Mbps) 802.11a 36 to 48 48 OFDM BPSK 6 802.11n (HT20) 36 to 48 OFDM BPSK 48 13

48

Following channel(s) was (were) selected for the final test as listed below.

SPURIOUS	EMISSIONS TES	T (ABOVE 1 C	+H2).

Receiver

36 to 48

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

· '.								
	MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)		
	802.11a	36 to 48	48	OFDM	BPSK	6		
	802.11n (HT20)	36 to 48	48	OFDM	BPSK	13		
	Receiver	36 to 48	48	-	-	-		

Following channel(s) was (were) selected for the final test as listed below.

TRANSMITTER UNWANTED EMISSIONS WITHIN THE HIPERLAN BANDS (SIGNAL UNDER SPECTRUM MASK):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATIOT YPE	DATA RATE (Mbps)
802.11a	36 to 48	36, 48	OFDM	BPSK	6
802.11n (HT20)	36 to 48	36, 48	OFDM	BPSK	13
802.11n (HT40)	38 to 46	38, 46	OFDM	BPSK	27
802.11ac (VHT80)	42	42	OFDM	BPSK	29.3

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
CF	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
ОСВ	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
ROP	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
TPC	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
PD	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng
AD	25deg. C, 60%RH	230Vac, 50Hz	Look Huang
SE<1G	29deg. C, 77%RH	230Vac, 50Hz	Denny Liu
SE ³ 1G	22deg. C, 79%RH	230Vac, 50Hz	Denny Liu
TSPM	25deg. C, 60%RH	230Vac, 50Hz	Nelson Teng

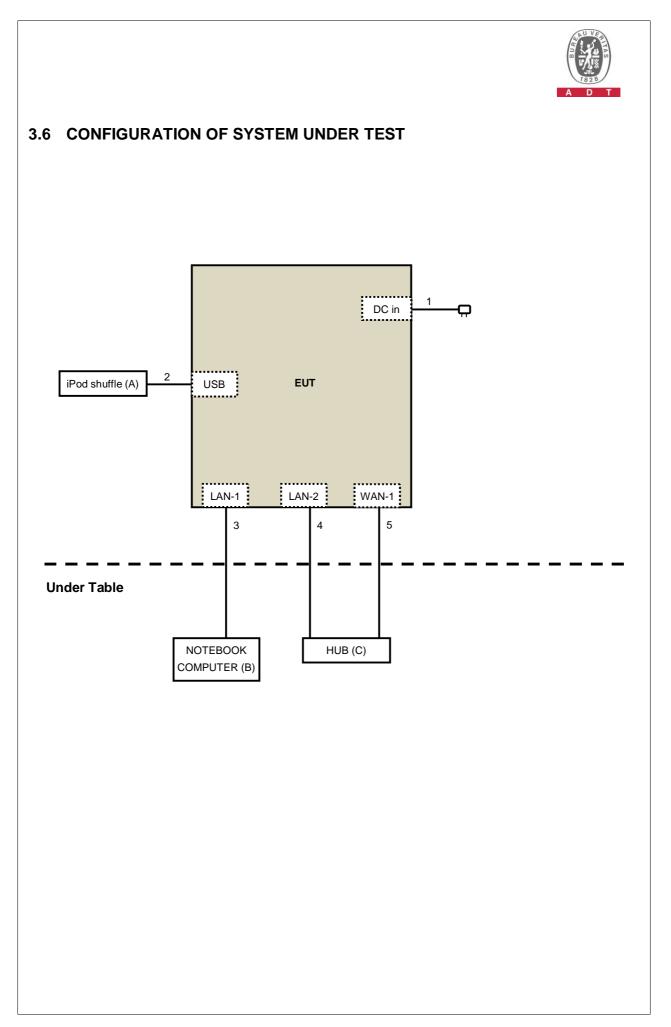
3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF product. According to the specifications of the manufacturers, it must comply with the requirements of the following standards:

EN 300 328 V1.8.1 (2012-06) EN 301 893 V1.7.1 (2012-06)

All tests have been performed and recorded as per the above standards.

3.5 DESCRIPTION OF SUPPORT UNITS


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID	Remark
А	iPod shuffle	Apple	MD778TA/A	CC4JG680F4T1	NA	Provided by Lab
I R	NOTEBOOK COMPUTER	DELL	PP32LA	DSLB32S	FCC DoC	Provided by Lab
С	HUB	ZyXEL	ES-116P	S060H02000215	FCC DoC	Provided by Lab

NOTE:

1. All power cords of the above support units are non-shielded (1.8 m).

No.	Cable	Qty.	Length (m)	Shielded (Yes/ No)	Cores (Number)	Remark
1	DC	1	1.83	No	0	Supplied by client
2	USB	1	0.3	Yes	0	Provided by Lab
3	RJ-45	1	10	No	0	Provided by Lab
4	RJ-45	1	1.8	No	0	Provided by Lab
5	RJ-45	1	1.8	No	0	Provided by Lab

4 TEST PROCEDURES AND RESULTS (FOR 2.4GHz)

TRANSMITTER PARAMETERS

4.1 **RF OUTPUT POWER**

4.1.1 LIMITS OF RF OUTPUT POWER

CONDITION	FREQUENCY BAND	LIMIT (e.i.r.p.)
Under all test conditions	2400 ~ 2483.5 MHz	AV: 20dBm

4.1.2 TEST PROCEDURE

Refer to chapter 5.3.2.2 of ETSI EN 300 328 V1.8.1.

Measurement				
Conducted measurement	Radiated measurement			

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

4.1.4 TEST SETUP

The measurements for RF output power was performed at both normal environmental conditions and at the extremes of the operating temperature. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific channel and power level.

4.1.5 TEST RESULTS

			EIRP POWER (dBm)				
TEST	TEST CONDITION		(CH1) 2412 MHz	(CH7) 2442 MHz	(CH13) 2472 MHz		
802.11b							
Tnom(°C)	25	Vnom(v)	17.58	17.58	17.72		
Tmin(℃)	0	Vnom(v)	19.70	19.52	19.74		
Tmax(°C)	40	Vnom(v)	17.10	17.09	17.21		
802.11g	802.11g						
Tnom(°C)	25	Vnom(v)	19.08	18.57	18.49		
Tmin(℃)	0	Vnom(v)	19.40	19.84	19.77		
Tmax(°C)	40	Vnom(v)	18.60	18.04	17.99		
802.11n (H	Г 20)						
Tnom(°C)	25	Vnom(v)	18.41	18.71	18.92		
Tmin(℃)	0	Vnom(v)	19.51	19.59	19.85		
Tmax(°C)	40	Vnom(v)	17.91	18.21	18.45		
				EIRP POWER (dBm)			
TEST CONDITION		(CH3) 2422 MHz	(CH7) 2442 MHz	(CH11) 2462 MHz			
802.11n (H	802.11n (HT40)						
Tnom(°C)	25	Vnom(v)	17.30	16.79	16.63		
Tmin(℃)	0	Vnom(v)	19.84	19.90	19.40		
Tmax(°C)	40	Vnom(v)	16.51	16.03	16.08		

4.2 POWER SPECTRAL DENSITY

4.2.1 LIMIT OF POWER SPECTRAL DENSITY

CONDITION	FREQUENCY BAND	LIMIT (e.i.r.p.)
Under normal conditions	2400 ~ 2483.5 MHz	10dBm / 1MHz

4.2.2 TEST PROCEDURE

Refer to chapter 5.3.3.2 of ETSI EN 300 328 V1.8.1.

Measurement			
Conducted measurement	Radiated measurement		

4.2.3 DEVIATION FROM TEST STANDARD

No deviation.

4.2.4 TEST SETUP

The test setup has been constructed as the normal test condition. The peak power density as defined in EN 300 328 clause 4.3.2.2 shall be measured and recorded. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

4.2.5 TEST RESULTS

802.11b

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER DENSITY (dBm/1MHz) (EIRP)	LIMIT (dBm/1MHz) (EIRP)	PASS/FAIL
1	2412	9.42	10	PASS
7	2442	9.49	10	PASS
13	2472	9.62	10	PASS

802.11g

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER DENSITY (dBm/1MHz) (EIRP)	LIMIT (dBm/1MHz) (EIRP)	PASS/FAIL
1	2412	7.88	10	PASS
7	2442	7.46	10	PASS
13	2472	7.51	10	PASS

802.11n (HT20)

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER DENSITY (dBm/1MHz) (EIRP)	LIMIT (dBm/1MHz) (EIRP)	PASS/FAIL
1	2412	7.20	10	PASS
7	2442	7.45	10	PASS
13	2472	7.41	10	PASS

802.11n (HT40)

CHANNEL	CHANNEL FREQUENCY (MHz)	POWER DENSITY (dBm/1MHz) (EIRP)	LIMIT (dBm/1MHz) (EIRP)	PASS/FAIL
3	2422	4.81	10	PASS
7	2442	4.99	10	PASS
11	2462	5.02	10	PASS

4.3 OCCUPIED CHANNEL BANDWIDTH

4.3.1 LIMIT OF OCCUPIED CHANNEL BANDWIDTH

	CONDITION	LIMIT
All types of equipment		Shall fall completely within the band 2400 to 2483.5 MHz.
Additional	For non-adaptive using wide band modulations other than FHSS system and e.i.r.p >10dBm.	Less than 20MHz
requirement	For non-adaptive Frequency Hopping system and e.i.r.p >10dBm.	Less than 5MHz

4.3.2 TEST PROCEDURE

Refer to chapter 5.3.8.2 of ETSI EN 300 328 V1.8.1.

Measur	ement
Conducted measurement	Radiated measurement

4.3.3 DEVIATION FROM TEST STANDARD

No deviation.

4.3.4 TEST SETUP

These measurements only were performed at normal test conditions. The measurement shall be performed only on the lowest and the highest frequency within the stated frequency range. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

4.3.5 TEST RESULTS

802.11b

CHANNEL	CHANNEL FREQUENCY	OCCUPIED BANDWIDTH	Measured f	Measured frequencies		PASS/FAIL
ONANIEL	(MHz)	(MHz)				
1	2412	15.12	2404.56	2419.68	FL > 2400 MHz and	PASS
13	2472	15.04	2464.4	2479.44	FH < 2483.5 MHz	PASS

802.11g

CHANNEL			CHANNEL OCCUPIED Measured frequencies				
ONANCE	(MHz)	(MHz)	FL (MHz)	FH (MHz)	LIMIT	PASS/FAIL	
1	2412	16.88	2403.52	2420.4	FL > 2400 MHz and	PASS	
13	2472	16.88	2463.36	2480.24	FH < 2483.5 MHz	PASS	

802.11n (HT20)

CHANNEL			Measured f	requencies	LIMIT	PASS/FAIL
ONANNEE						
1	2412	17.92	2403.04	2420.96	FL > 2400 MHz and	PASS
13	2472	18	2462.96	2480.96	FH < 2483.5 MHz	PASS

802.11n (HT40)

CHANNEL				LIMIT	PASS/FAIL	
CHANNEL	(MHz)			FH (MHz)		FASS/I AIL
3	2422	36.64	2403.76	2440.4	FL > 2400 MHz and	PASS
11	2462	36.48	2443.6	2480.08	FH < 2483.5 MHz	PASS

Note: FL is the lowest frequency of the 99% occupied bandwidth of power envelope. FH is the highest frequency of the 99% occupied bandwidth of power envelope.

4.4 TRANSMITTER UNWANTED EMISSIONS IN THE OUT-OF-BAND DOMAIN

4.4.1 LIMITS OF TRANSMITTE UNWANTED EMISSIOIN IN THE OUT-OF-BAND DOMAIN

CONDITI	ON		LIMIT					
Under all test of	conditions	domain	The transmitter unwanted emissions in the out-of-band domain but outside the allocated band, shall not exceed the values provided by the mask in below figure.					
			ſſ					
Spurious Domain	Out Of Band Don	nain (OOB)	Allocated Band	Out Of Band Domain (OOB)	Spurious Domain			
	А							
В								
с								
•								
2 400 MHz		-BW 24	00 MHz 2 483,5 M	MHz 2 483,5 MHz + BW 2 483,5	5 MHz + 28W			
A: -10 dBm/MHz e.i.r. B: -20 dBm/MHz e.i.r. C: Spurious Domain	<i>p</i> .		BW = Occupie	ed Channel Bandwidth in MHz or 1 Mł	Hz whichever is greater			

Defer to chapter 5.2.0.2 of FTCLEN 200.220

Refer to chapter 5.3.9.2 of ETSI EI	<u>N 300 328 N</u>	/1.8.1.

Measurement					
Conducted measurement	Radiated measurement				

4.4.3 DEVIATION FROM TEST STANDARD

No deviation

4.4.4 TEST SETUP

The measurements were performed at normal environmental conditions and shall be repeated at the extremes of the operating temperature. The measurement was performed at the lowest and the highest channel on which the equipment can operate. The equipment was configured to operate under its worst case situation with respect to output power. The frequency has to be recorded for the right and left end above threshold of highest and lowest channel respectively.

4.4.5 TEST RESULTS

802.11b

CHAN FREQU			2412	MHz		2472MHz			
OOB EMISS			SION (MHz	<u>z)</u>	00	OB EMISS	SION (MHz	:)	
FREQ.				2483.5 ~ 2498.54		2498.54 ~ 2513.58			
			POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)
Tnom 25℃	Vnom(v)	2399.50	-31.00	2384.50	-55.05	2484.00	-27.41	2499.00	-55.79
Tmin 0°C	Vnom(v)	2399.50	-30.92	2384.50	-55.04	2484.00	-27.38	2499.00	-55.87
Tmax 40℃	Vnom(v)	2399.50	-31.08	2384.50	-54.94	2484.00	-27.60	2499.00	-55.69
Power Limit (dBm/MHz) -1		-10.	-10.00		-20.00		-10.00		00
PASS/F	AIL	PAS	SS	PAS	SS	PAS	SS	PASS	

802.11g

CHAN FREQU		2412MHz				2472MHz 2472MHz			
		00	DB EMISS	SION (MHz	z)	00	OB EMISS	SION (MHz	z)
TEST CONDITION					2366.24 ~ 2383.12		2483.5 ~ 2500.38		0.38 17.26
		FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)
Tnom 25℃	Vnom(v)	2399.50	-20.00	2383.05	-50.26	2484.00	-20.39	2511.00	-50.71
Tmin 0°C	Vnom(v)	2399.50	-19.92	2383.05	-50.25	2484.00	-20.36	2511.00	-50.79
Tmax 40℃	Vnom(v)	2399.50	-20.08	2383.05	-50.15	2484.00	-20.58	2511.00	-50.61
Power Limit (dBm/MHz)		-10.00		-20.00		-10.00		-20.00	
PASS/F	AIL	PAS	SS	PAS	SS	PAS	SS	PASS	

802.11n (HT20)

CHANNEL FREQUENCY		2412MHz			2472MHz				
TEST CONDITION		OOB EMISSION (MHz)				OOB EMISSION (MHz)			
		2382.08 2364.16 ~ 2400 ~ 2382.08		2483.5 ~ 2501.5		2501.5 ~ 2519.5			
		FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)
Tnom 25℃	Vnom(v)	2399.50	-21.78	2375.58	-47.90	2484.00	-17.72	2507.92	-48.26
Tmin 0°C	Vnom(v)	2399.50	-21.70	2375.58	-47.89	2484.00	-17.69	2507.92	-48.34
Tmax 40°C	Vnom(v)	2399.50	-21.86	2375.58	-47.79	2484.00	-17.91	2507.92	-48.16
Power Limit (dBm/MHz)		-10.00		-20.00		-10.00		-20.00	
PASS/F	AIL	PAS	SS	PAS	SS	PASS		PASS	

802.11n (HT40)

CHAN FREQU		2422MHz			2462MHz				
TEST CONDITION		OOB EMISSION (MHz)				OOB EMISSION (MHz)			
		2363.36 ~ 2400		2326.72 ~ 2363.36		2483.5 ~ 2519.98		2519.98 ~ 2556.46	
		FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)	FREQ. (MHz)	POWER (dBm/ MHz)
Tnom 25℃	Vnom(v)	2399.50	-27.57	2357.86	-48.16	2484.00	-23.61	2537.64	-47.98
Tmin 0°C	Vnom(v)	2399.50	-27.49	2357.86	-48.15	2484.00	-23.58	2537.64	-48.06
Tmax 40℃	Vnom(v)	2399.50	-27.65	2357.86	-48.05	2484.00	-23.80	2537.64	-47.88
Power Limit (dBm/MHz)		-10.00 -20.00		-10.00		-20.00			
PASS/F	AIL	PAS	SS	PAS	SS	PAS	SS	PASS	

4.5 ADAPTIVITY (CHANNEL ACCESS MECHANISM)

This requirement does not apply to non-adaptive equipment or adaptive equipment operating in a non-adaptive mode providing the equipment complies with the requirements and/or restrictions applicable to non-adaptive equipment. In addition, this requirement does not apply for equipment with a maximum declared RF Output power level of less than 10 dBm e.i.r.p. or for equipment when operating in a mode where the RF Output power is less than 10 dBm e.i.r.p.

Applicability of adaptive requirements and limit for wide band modulation techniques

	Operational Mode						
		LBT based Detect and Avoid					
Requirement	Non-LBT based Detect and Avoid	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as IEEE spec.)			
Minimum Clear Channel Assessment (CCA) Time	NA	20 us (see note 1)	(see note 2)	20 us (see note 1)			
Maximum Channel Occupancy (COT) Time	40 ms	1 ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)			
Minimum Idle Period	5us	5% of COT	(see note 2)	CCA to q*CCA			
Extended CCA check	NA	NA	(see note 2)	R*CCA (see note 4)			
Short Control Signalling Transmissions	Maximum	Maximum duty cycle of 10 % within an observation period of 50 ms (see note 5)					
NOTE 1: The CCA time use							

NOTE 2: Minimum required of EN300 328 section 4.3.2.5.2.2.2 or Load Based Equipment may implement an LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using energy detect, as described in IEEE Std. 802.11[™]-2007clauses 9, 15, 18 or 19, in IEEE Std. 802.11n[™]-2009, clauses 9, 11 and 20 or in IEEE Std. 802.15.4[™]-2011, clauses 4 and 5.

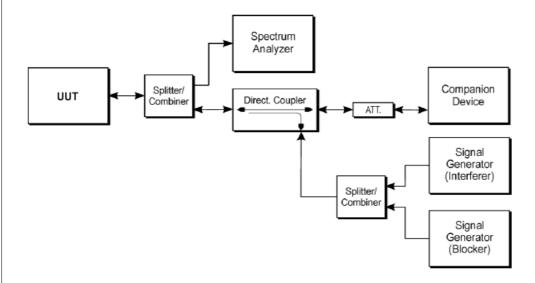
NOTE 3: q is selected by the manufacturer in the range [4...32]

NOTE 4: The value of R shall be randomly selected in the range [1..q]

NOTE 5: Adaptive equipment may or may not have Short Control Signalling Transmissions

Interference threshold level

Maximum transmit power (P _H) EIRP dBm	Threshold level (TL) (see notes 1 and 2)			
20	-70 dBm / MHz			
NOTE 1: TL = -70 dBm/MHz + 20 - PH (assuming a 0dBi receive antenna and PH specified in dBm e.i.r.p.).				
NOTE 2: transmitter the CCA threshold level (TL) shall be equal or lower than -70 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna).				



4.5.1 TEST PROCEDURE

Refer to chapter 5.3.7.2 of ETSI EN 300 328 V1.8.1.

Measurement					
Conducted measurement	Radiated measurement				

4.5.2 TEST SETUP CONFIGURATION

UUT SOFTWARE AND FIRMWARE VERSION

Product	Model No.	Software/Firmware Version
Dualband Ceiling/Wall/Desktop Enterprise AP (802.11ac)	SS-AC1200-EU	v3.4.6.3

COMPANION DEVICE INFORMATION

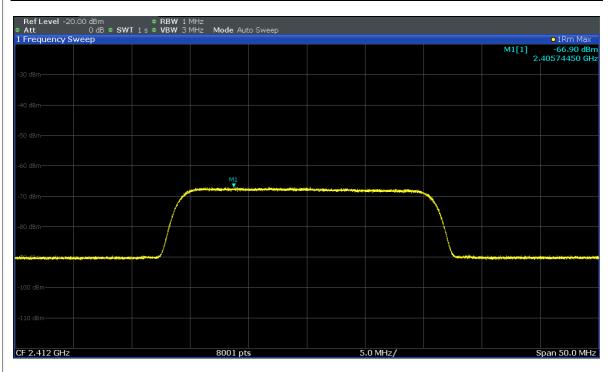
Product	Brand	Model No.	Software/Firmware Version
802.11a/b/g/n/ac RTL8821AE Combo	REALTEK	RTL8821AE	2014/01/08
module		BT	2012.7.1231.2013

4.5.3 LIST OF MEASUREMENTS

UUT Operational		Limitation			
Mode	Applicable	The Maximum Channel Occupancy Time	The Minimum idle Period		
Load Based Equipment (CCA using 'energy detect')	Р	Max. COT< <u>13</u> ms [Max. COT=(13/32) × q ms.]	Between CCA = <u>20</u> us to q= <u>32</u> xCCA = 640us		

Note: The value of q is declared by the manufacturer.

Clause	Test Parameter	Remarks	Pass/Fail
4.3.2.5.2.2.1	Adaptive (Frame Based Equipment)	Not Applicable	NA
4.3.2.5.2.2.2	Adaptive (Load Based Equipment)	Applicable	Pass
4.3.2.5.3	Short Control Signalling Transmissions	Applicable	Pass



4.5.4 INTERFERENCE THRESHOLD LEVEL

Detection Threshold Level

The maximum EIRP power is 19.9dBm and antenna gain is 3.16dBi. Detection Threshold level= -70dBm/MHz + 20 – Pout EIRP(19.9dBm) + G (3.16dBi) = -66.74dBm/MHz.

The interference signal level to the UUT is -66.74dBm/MHz.

Detection Threshold Level

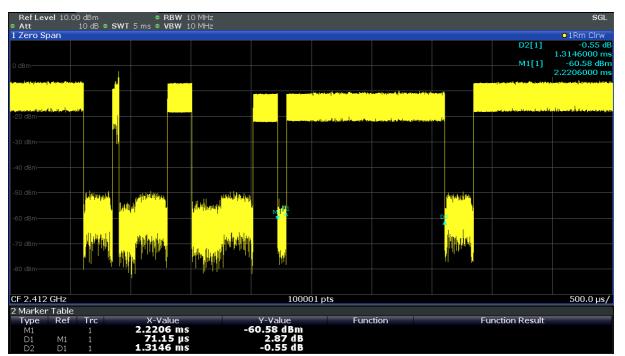


4.5.5 TEST RESULT

4.5.5.1 ADAPTIVE RESULT

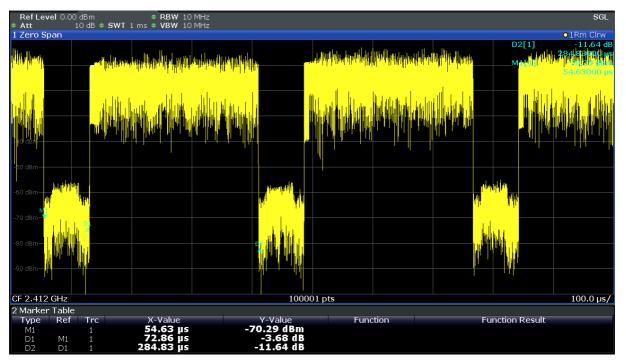
OPERATING FREQUENCY BANDS AND MODE OF EUT

Operational Mode	Operating Frequency (Low Channel, MHz)	Operating Frequency (High Channel, MHz)	Test Result
802.11b	2412	2472	PASS
802.11g	2412	2472	PASS
802.11n (HT20)	2412	2472	PASS
802.11n (HT40)	2422	2462	PASS



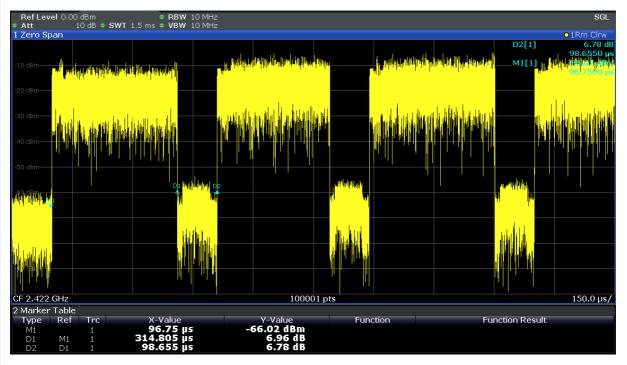
4.5.5.2 THE CHANNEL OCCUPANCY TIME RESULT

OPERATING FREQUENCY BANDS AND MODE OF EUT


Operational Mode	Operating Frequency Low Channel (MHz)	The Channel Occupancy Time (ms)	Minimum Idle Period (ms)	Test Result
802.11b	2412	1.31	0.07	PASS
802.11g	2412	0.28	0.07	PASS
802.11n (HT20)	2412	0.9	0.1	PASS
802.11n (HT40)	2422	0.3	0.1	PASS

802.11b mode

802.11g mode



802.11n (HT20) mode

<u>802.11n (HT40) mode</u>

4.5.5.3 SHORT CONTROL SIGNALLING TRANSMISSIONS RESULT

SHORT CONTROL SIGNALLING TRANSMISSION RESULT

The SCST limit is 5ms The SCST total on time is 391.5us < SCST limit

		- DRW							
RefLevel 10. Att		● RBW 50 ms ● VBW							
TRG:VID 1 Zero Span									•1Rm Clrw
								D1[1]	-3.35 dB 391.500 µs
0.40								M1[1]	-53.40 dBm
0 dBm									-65.000 µs
-10 dBm									
-10 0800									
-20 dBm									
-20 dBm-									
-30 dBm									
-50 0611-									
40. dBm	TRG -40.000 dBm-								
-40 0011	TIKG -40.000 08m								
-50 dBm									
	1 Natural I a						, has been a	de la contra tra	I I I I I I I I I I I I I I I I I I I
and the state of t	A STATE OF THE OWNER	, al transmission de la construcción	all and a proposition of the soul of	aladar nai a Manutun dan sa had	in si tau ku	and and and a state of the second of the	under alle en anter al partie de la construction de la construction de la construction de la construction de la La construction de la construction d	an all and a state of the state o	a si nga si ka sa
la anticolitica da anticipio	dea Millio Phateorica de la compañía	and a state of the state of the state of the	nder nameliji i dina mana podi	landa ya ki ya kata shi a si k	للرواليل خار بعلما تشالى والروان	linea a sub a Linea (a cincina da	والمرابا ألوجر ولوجر المقرم إلى والمرا	daman dan dan dara dara dara dara dara dara	an hain ai k bah ditu ditu di sa kana kana
-70 dBm		The second se							
-80 dBm									
oo abiii									
CE 2.412 GHz				10000	11 nts				5.0 ms/

The short control signalling transmission length

4.6 TRANSMITTER SPURIOUS EMISSIONS

4.6.1 LIMITS OF TRANSMITTER SPURIOUS EMISSIONS

Frequency Range	Maximum Power Limit (ERP (≤ 1 GHz) EIRP (> 1 GHz))	Bandwidth
30 MHz to 47 MHz	-36dBm	100kHz
47 MHz to 74 MHz	-54dBm	100kHz
74 MHz to 87,5 MHz	-36dBm	100kHz
87,5 MHz to 118 MHz	-54dBm	100kHz
118 MHz to 174 MHz	-36dBm	100kHz
174 MHz to 230 MHz	-54dBm	100kHz
230 MHz to 470 MHz	-36dBm	100kHz
470 MHz to 862 MHz	-54dBm	100kHz
862 MHz to 1 GHz	-36dBm	100kHz
1GHz ~ 12.75GHz	-30dBm	1MHz

4.6.2 TEST PROCEDURE

Refer to chapter 5.3.10.2 of ETSI EN 300 328 V1.8.1.

ement
Radiated measurement
easured as their power in a specified load fective radiated power when radiated by h the antenna connector(s) terminated by th multiple transmit chains):
mit chains for the corresponding 1 MHz compared with the limits.
mit chains shall be individually hese limits have been reduced by 10 × nsmit chains).

4.6.3 DEVIATION FROM TEST STANDARD

No deviation.

4.6.4 TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The equipment was configured to operate under its worst case situation with respect to output power.
- 3. The test setup has been constructed as the normal use condition. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

4.6.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

802.11b

	SPUR	IOUS EMISSION L	EVEL	
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
92.38	V	-66.64	-54.00	-12.64
102.47	Н	-72.84	-54.00	-18.84
103.25	V	-63.44	-54.00	-9.44
223.55	Н	-74.01	-54.00	-20.01
479.98	Н	-73.98	-54.00	-19.98
577.87	Н	-71.07	-54.00	-17.07
599.99	Н	-70.17	-54.00	-16.17
625.02	Н	-71.32	-54.00	-17.32
625.02	V	-72.25	-54.00	-18.25
648.89	V	-74.60	-54.00	-20.60
650.54	Н	-75.80	-54.00	-21.80
677.51	V	-74.94	-54.00	-20.94
687.40	Н	-75.71	-54.00	-21.71
740.47	V	-75.29	-54.00	-21.29
749.98	Н	-65.28	-54.00	-11.28
749.98	V	-63.93	-54.00	-9.93
797.04	V	-75.59	-54.00	-21.59
799.95	Н	-74.06	-54.00	-20.06
826.14	V	-75.72	-54.00	-21.72
854.57	V	-75.07	-54.00	-21.07

802.11n (HT20)

SPURIOUS EMISS FREQUENCY RAN	20N/U-2 1/2U-2	OPERAT CHANNE	13	
	SPUR	IOUS EMISSION L	EVEL	
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
39.51	V	-73.12	-36.00	-37.12
73.27	V	-67.95	-54.00	-13.95
101.79	Н	-72.74	-54.00	-18.74
101.89	V	-63.55	-54.00	-9.55
172.91	V	-80.74	-36.00	-44.74
192.02	Н	-76.53	-54.00	-22.53
223.36	V	-76.47	-54.00	-22.47
223.55	Н	-74.57	-54.00	-20.57
400.03	Н	-72.26	-36.00	-36.26
400.03	V	-74.88	-36.00	-38.88
599.99	Н	-71.26	-54.00	-17.26
624.92	Н	-70.68	-54.00	-16.68
625.02	V	-73.05	-54.00	-19.05
749.98	Н	-64.37	-54.00	-10.37
749.98	V	-63.50	-54.00	-9.50
874.94	Н	-67.44	-36.00	-31.44
874.94	V	-70.52	-36.00	-34.52
960.03	Н	-71.82	-36.00	-35.82
1000.00	Н	-68.12	-36.00	-32.12
1000.00	V	-66.97	-36.00	-30.97

ABOVE 1GHz WORST-CASE DATA

802.11b

SPURIOUS EMISSION FREQUENCY RANGE	1GHz ~ 12.75GHz	OPERATING CHANNEL	1, 13
--------------------------------------	-----------------	----------------------	-------

		SPURIOUS EM	ISSION LEVEL		
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
	4823.50	Н	-49.04	-30.00	-19.04
1	4823.85	V	-47.10	-30.00	-17.10
1	9647.75	Н	-48.52	-30.00	-18.52
	9647.90	V	-46.94	-30.00	-16.94
	4943.23	Н	-49.21	-30.00	-19.21
10	4943.51	V	-48.81	-30.00	-18.81
13	9888.12	V	-47.66	-30.00	-17.66
	9888.30	Н	-48.68	-30.00	-18.68

802.11n (HT20)

SPURIOUS EMISSION FREQUENCY RANGE	12.75GHz OPERATING CHANNEL	1, 13
--------------------------------------	-------------------------------	-------

		SPURIOUS EM	ISSION LEVEL		
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
	4823.05	V	-48.59	-30.00	-18.59
1	4823.92	Н	-50.59	-30.00	-20.59
	9647.70	Н	-47.38	-30.00	-17.38
	9647.99	V	-46.13	-30.00	-16.13
	4942.37	V	-50.00	-30.00	-20.00
13	4942.39	Н	-51.02	-30.00	-21.02
13	9887.75	V	-47.51	-30.00	-17.51
	9887.83	Н	-48.83	-30.00	-18.83

RECEIVER PARAMETERS

4.7 RECEIVER SPURIOUS RADIATION

4.7.1 LIMITS OF RECEIVER SPURIOUS RADIATION

Frequency Range	Maximum Power Limit (e.r.p. (≤ 1 GHz) e.i.r.p. (> 1 GHz))
30MHz ~ 1GHz	-57dBm
1GHz ~ 12.75GHz	-47dBm

4.7.2 TEST PROCEDURE

Refer to chapter 5.3.11.2 of ETSI EN 300 328 V1.8.1.

Measure	ement
Conducted measurement	Radiated measurement
For Conducted measurement:	
The level of unwanted emissions shall be me (conducted spurious emissions) and their eff the cabinet or structure of the equipment wit a specified load (cabinet radiation).	fective radiated power when radiated by
Conducted measurement (For equipment wi	th multiple transmit chains):
	mit chains for the corresponding 1 MHz

No deviation.

4.7.4 TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. Testing was performed when the equipment was in a receive-only mode.
- 3. The test setup has been constructed as the normal use condition. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

4.7.5 TEST RESULTS

RX WORST-CASE DATA

	SPURIOUS EMISSION LEVEL							
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)				
101.89	Н	-74.04	-57.00	-17.04				
101.89	V	-65.14	-57.00	-8.14				
108.78	V	-65.88	-57.00	-8.88				
141.38	V	-79.63	-57.00	-22.63				
157.58	Н	-76.43	-57.00	-19.43				
180.48	V	-80.13	-57.00	-23.13				
225.88	V	-76.33	-57.00	-19.33				
226.85	Н	-73.24	-57.00	-16.24				
331.15	V	-78.94	-57.00	-21.94				
362.49	Н	-74.63	-57.00	-17.63				
362.49	V	-76.23	-57.00	-19.23				
399.93	Н	-70.08	-57.00	-13.08				
479.98	Н	-72.87	-57.00	-15.87				
624.92	Н	-72.27	-57.00	-15.27				
749.98	Н	-64.36	-57.00	-7.36				
749.98	V	-62.56	-57.00	-5.56				
874.94	Н	-67.91	-57.00	-10.91				
874.94	V	-68.86	-57.00	-11.86				
1000.00	Н	-64.38	-57.00	-7.38				
1000.00	V	-66.16	-57.00	-9.16				

RX ABOVE 1GHz DATA

SPURIOUS EMISSION FREQUENCY RANGE1GHz ~ 12.75GHzOPERATING CHANNEL1, 13
--

SPURIOUS EMISSION LEVEL							
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)		
1	9647.70	V	-48.26	-47.00	-1.26		
	9647.81	Н	-51.81	-47.00	-4.81		
40	9887.78	Н	-52.23	-47.00	-5.23		
13	9887.84	V	-49.73	-47.00	-2.73		

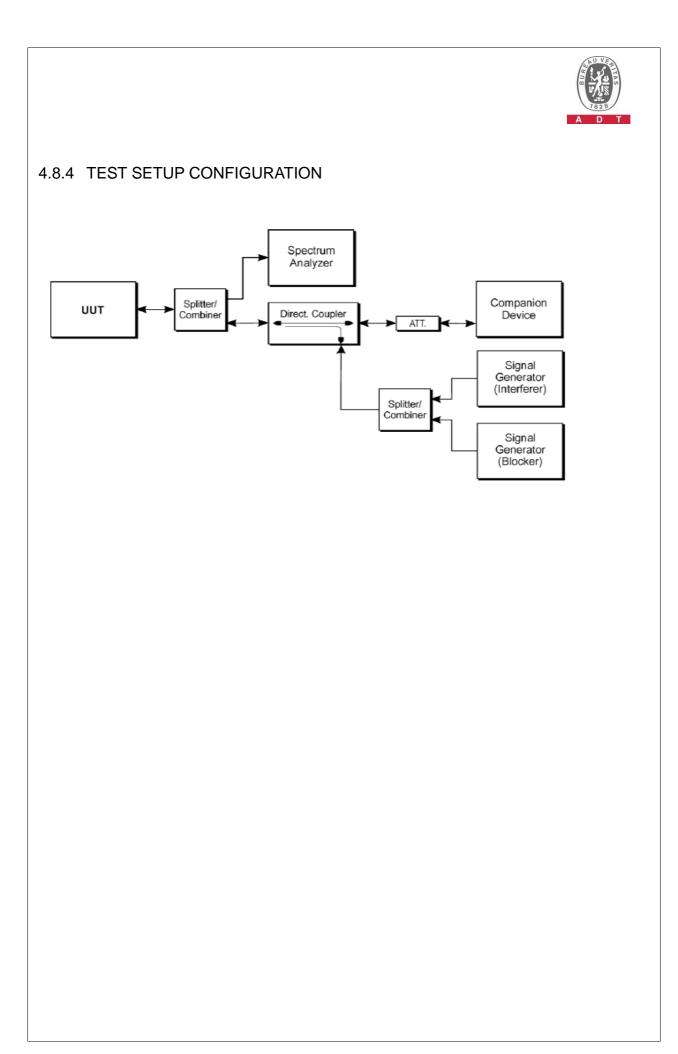
4.8 RECEIVER BLOCKING

4.8.1 LIMITS OF RECEIVER BLOCKING

Adaptive equipment using wide band modulations other than FHSS, shall comply with the requirements defined in non-LBT based DAA or LBT based DAA in the presence of a blocking signal with characteristics as provided in below table.

Equipment Type (LBT / non- LBT)	Wanted signal mean power from companion device	Blocking signal frequency [MHz]	Blocking signal power [dBm]	Type of interfering signal
LBT	sufficient to maintain the link (see note 2)	2 395 or 2 488,5	-30	CW
Non-LBT	-30 dBm	(see note 1)	527204	

NOTE 2: A typical value which can be used in most cases is -50 dBm/MHz.


4.8.2 TEST PROCEDURE

Refer to chapter 5.3.7.2.1. of ETSI EN 300 328 V1.8.1.

Measurement					
Conducted measurement	Radiated measurement				

4.8.3 DEVIATION FROM TEST STANDARD

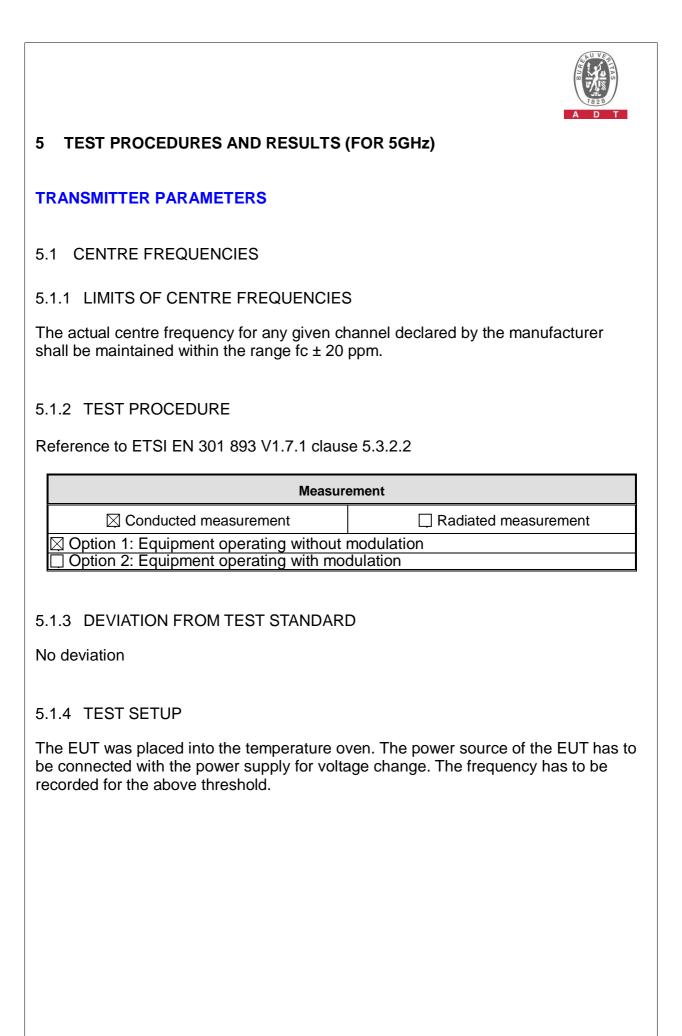
No deviation.

4.8.5 TEST RESULT

802.11b

CHANNEL	CHANNEL FREQUENCY (MHz)	Wanted signal mean power from companion device (dBm/MHz)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	PASS/FAIL
1	2412	-50	2488.5	-30	PASS
13	2472	-50	2395	-30	PASS

802.11g


CHANNEL	CHANNEL FREQUENCY (MHz)	Wanted signal mean power from companion device (dBm/MHz)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	PASS/FAIL
1	2412	-50	2488.5	-30	PASS
13	2472	-50	2395	-30	PASS

802.11n (HT20)

CHANNEL	CHANNEL FREQUENCY (MHz)	Wanted signal mean power from companion device (dBm/MHz)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	PASS/FAIL
1	2412	-50	2488.5	-30	PASS
13	2472	-50	2395	-30	PASS

802.11n (HT40)

CHANNEL	CHANNEL FREQUENCY (MHz)	Wanted signal mean power from companion device (dBm/MHz)	Blocking signal frequency (MHz)	Blocking signal power (dBm)	PASS/FAIL
3	2422	-50	2488.5	-30	PASS
11	2462	-50	2395	-30	PASS

5.1.5 TEST RESULTS

802.11a

			CARRIER CENTRE FREQUENCIES f _c (MHz)				
TES	TEST CONDITION		(CH36) 5180 MHz				
			Reading ppm				
Tnom(°C)	25	Vnom(v)	5180.0106	2.0463			
Train (°C)	0	Vmin(v)	5180.0017	0.3282			
Tmin(℃)	0	Vmax(v)	5180.0025	0.4826			
$T_{mov}(^{\circ}C)$	40	Vmin(v)	5179.9891	-2.1042			
Tmax(C)	Tmax(℃) 40 Vmax(v)		5179.9870	-2.5097			
	Lir	nit	f _c +/- 20ppm				

5.2 NOMINAL AND OCCUPIED CHANNEL BANDWIDTH

5.2.1 LIMITS OF NOMINAL AND OCCUPIED CHANNEL BANDWIDTH

The Nominal Channel Bandwidth shall be at least 5 MHz at all times. The Occupied Channel Bandwidth shall be between 80 % and 100 % of the declared Nominal Channel Bandwidth. In case of smart antenna systems (devices with multiple transmit chains) each of the transmit chains shall meet this requirement

NOTE: During an established communication, a device is allowed to operate temporarily in a mode where its Occupied Channel Bandwidth may be reduced to as low as 40 % of its Nominal Channel Bandwidth with a minimum of 4 MHz.

5.2.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.3.2

Measurement					
Conducted measurement	Radiated measurement				

5.2.3 DEVIATION FROM TEST STANDARD

No deviation.

5.2.4 TEST SETUP

The test setup has been constructed as the normal use condition. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

5.2.5 TEST RESULTS

802.11a

CHANNEL	CHANNEL FREQUENCY (MHz)	OCCUPIED BANDWIDTH (MHz)	MINIMUM LIMIT(MHz)	MAXIMUN LIMIT(MHz)	PASS / FAIL
48	5240	16.56	16	20	PASS

802.11n (HT20)

CHANNEL	CHANNEL FREQUENCY (MHz)	OCCUPIED BANDWIDTH (MHz)	MINIMUM LIMIT(MHz)	MAXIMUN LIMIT(MHz)	PASS / FAIL
48	5240	17.76	16	20	PASS

802.11n (HT40)

CHANNEL	CHANNEL FREQUENCY (MHz)	OCCUPIED BANDWIDTH (MHz)	MINIMUM LIMIT(MHz)	MAXIMUN LIMIT(MHz)	PASS / FAIL
38	5190	36.48	32	40	PASS

802.11ac (VHT80)

CHANNEL	CHANNEL FREQUENCY (MHz)	OCCUPIED BANDWIDTH (MHz)	MINIMUM LIMIT(MHz)	MAXIMUN LIMIT(MHz)	PASS / FAIL
42	5210	75.2	64	80	PASS

5.3 RF OUTPUT POWER

5.3.1 LIMITS OF RF OUTPUT POWER

Frequency Range	Mean e.i.r.p. limit (dBm)		
(MHz)	With TPC	Without TPC	
5150 to 5350	23	20 / 23 (see note 1)	
5470 to 5725	30 (see note 2)	27 (see note 2)	

NOTE 1: The applicable limit is 20 dBm, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 23 dBm.

NOTE 2: Slave devices without a Radar Interference Detection function shall comply with the limits for the band 5 250 MHz to 5 350 MHz.

NOTE 3: In case of multiple (adjacent or non-adjacent) channels within the same sub-band, the total RF output power of all channels in that sub-band shall not exceed the limits defined above table.

In case of multiple, non-adjacent channels operating in separate sub-bands, the total RF output power in each of the sub-bands shall not exceed the limits defined above table.

5.3.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.4.2

Measurement						
Conducted measurement						
Option 1: For equipment with continuous transmission capability or for equipment operating (or with the capability to operate) with a constant duty cycle (e.g. Frame Based equipment).						
Option 2: For equipment without continuous transmission capability and operating (or with the capability to operate) in only one sub-band.						
Option 3 For equipment without continuous transmission capability and having simultaneous transmissions in both sub-bands.						

5.3.3 DEVIATION FROM TEST STANDARD

No deviation.

5.3.4 TEST SETUP

The test setup has been constructed as the normal and extreme test conditions. The RF power as defined in EN 301 893 clause 4.4.1.1 shall be measured and recorded. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

5.3.5 TEST RESULTS FOR RF OUTPUT POWER

802.11a

			TRANSMITTER POWER (dBm)		
TEST CONDITION		NDITION	(CH36) 5180 MHz	(CH48) 5240 MHz	
			Average EIRP	Average EIRP	
Tnom(°C)	25	Vnom(v)	21.32	21.35	
Train (°C)	(°C) 0 Vmin(v) Vmax(v)	Vmin(v)	20.72	21.36	
Tmin(℃)		Vmax(v)	20.74	21.37	
Tmov(°C)	40	Vmin(v)	20.63	20.84	
Tmax(℃)		Vmax(v)	20.63	20.82	

802.11n (HT20)

			TRANSMITTER POWER (dBm)		
TEST CONDITION		NDITION	(CH36) 5180 MHz	(CH48) 5240 MHz	
			Average EIRP	Average EIRP	
Tnom(℃)	25	Vnom(v)	21.23	21.55	
Tmin(°C)	0	Vmin(v)	20.92	21.59	
Tmin(℃)		Vmax(v)	20.94	21.60	
Tmax(℃)	‹(°C) 40	Vmin(v)	20.79	20.99	
		Vmax(v)	20.79	20.97	

802.11n (HT40)

			TRANSMITTER POWER (dBm)		
TES	TEST CONDITION		(CH38) 5190 MHz	(CH46) 5320 MHz	
			Average EIRP	Average EIRP	
Tnom(℃)	25	Vnom(v)	22.68	22.64	
Taria (°C)	0	Vmin(v)	22.38	22.20	
Tmin(℃)		Vmax(v)	22.40	22.21	
Tmax(℃)	°C) 40	Vmin(v)	22.25	22.01	
		Vmax(v)	22.25	21.99	

802.11ac (VHT80)

			TRANSMITTER POWER (dBm)
TEST CONDITION		NDITION	(CH42) 5210 MHz
			Average EIRP
Tnom(°C)	25	Vnom(v)	22.49
Train (°C)	0	Vmin(v)	22.66
Tmin(℃)	0	Vmax(v)	22.70
Tmov(°C)	40	Vmin(v)	22.06
Tmax(℃)	40	Vmax(v)	22.02

5.4 POWER DENSITY

5.4.1 LIMITS OF POWER DENSITY

Frequency Band	Mean e.i.r.p. density limit (dBm/MHz)				
(MHz)	With TPC	Without TPC			
5150 to 5350	10	7 / 10 (see note 1)			
5470 to 5725	17 (see note 2)	14 (see note 2)			
NOTE 1: The applicable limit is 7 dBm/MHz, except for transmissions whose nominal bandwidth falls completely within the band 5 150 MHz to 5 250 MHz, in which case the applicable limit is 10 dBm/MHz.					
NOTE 2: Slave devices without a Radar Interference Detection function shall comply with the limits for the band 5 250 MHz to 5 350 MHz.					
NOTE 3: In case of multiple (adjacent or non-adjacent) channels within the same sub-band, the total RF output power of all channels in that sub-band shall not exceed the limits defined above table.					
In case of multiple, non-adjacent channels operating in separate sub-bands, the total RF output power in each of the sub-bands shall not exceed the limits defined above table					

5.4.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.4.2.1.3

Measurement					
Conducted measurement					
Option 1: For equipment with continuous transmission capability or for equipment operating (or with the capability to operate) with a constant duty cycle (e.g. Frame Based equipment)					
Option 2: For equipment without continuous transmission capability and without the capability to transmit with a constant duty cycle					
capability to transmit with a cons					

5.4.3 DEVIATION FROM TEST STANDARD

No deviation.

5.4.4 TEST SETUP

The transmitter shall be connected to the measuring equipment via a suitable attenuator and the power density value shall be measured and recorded.

5.4.5 TEST RESULTS

802. 11a

Channel Number	Channel Frequency (MHz)	Power Density (dBm/1MHz) (EIRP)	Limit (dBm/1MHz) (EIRP)	PASS/FAIL
36	5180	8.96	10	PASS
48	5240	9.15	10	PASS

802.11n (HT20)

Channel Number	Channel Frequency (MHz)	Power Density (dBm/1MHz) (EIRP)	Limit (dBm/1MHz) (EIRP)	PASS/FAIL
36	5180	9.41	10	PASS
48	5240	9.78	10	PASS

802.11n (HT40)

Channel Number	Channel Frequency (MHz)	Power Density (dBm/1MHz) (EIRP)	Limit (dBm/1MHz) (EIRP)	PASS/FAIL
38	5190	7.39	10	PASS
46	5230	7.67	10	PASS

802.11ac (VHT80)

Channel Number	Channel Frequency (MHz)	Power Density (dBm/1MHz) (EIRP)	Limit (dBm/1MHz) (EIRP)	PASS/FAIL
42	5210	6.66	10	PASS

5.5 ADAPTIVITY (CHANNEL ACCESS MECHANISM)

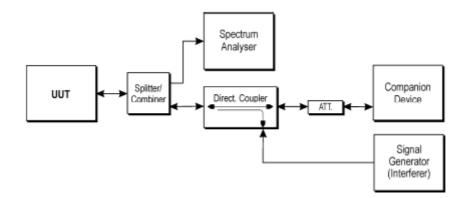
This requirement applies to equipment, testing shall be performed using the highest nominal channel Bandwidth. The manufacturer shall state whether the UUT is capable of operating as a Frame Based Equipment or Load Based Equipment. See tables for the applicability of adaptive requirements and limit for each of the operational modes.

Applicability of adaptive requirements and limit

		Operational Mod	e			
Requirement	Frame Based Equipment	Load Based Equipment (CCA using 'energy detect')	Load Based Equipment (CCA not using any of the mechanisms referenced as IEEE spec.)			
Minimum Clear Channel Assessment (CCA) Time	20us (see note 1)	(see note 2)	20us (see note 1)			
Maximum Channel Occupancy (COT) Time	1 ms to 10 ms	(see note 2)	(13/32)*q ms (see note 3)			
Minimum Idle Period	5% COT	(see note 2)	CCA to q*CCA			
Extended CCA check	NA	(see note 2)	N*CCA (see note 4)			
Short Control Signalling Transmissions	Maximum duty cy	rcle of 5 % within an ol ms (see note 5)	oservation period of 50			
NOTE 1: The CCA time used by the equipment shall be declared by the manufacturer. NOTE 2: Minimum required of EN301 893 section 4.9.2.2 or LBT based spectrum sharing mechanism based on the Clear Channel Assessment (CCA) mode using 'energy detect', as described in IEEE 802.11 [™] -2007 [9], clauses 15 and 17, in IEEE 802.11n [™] -2009 [10], clause 20 NOTE 3: q is selected by the manufacturer in the range [432] NOTE 4: The value of N shall be randomly selected in the range [1q] NOTE 5:Adaptive equipment may or may not have Short Control Signalling Transmissions.						

Interference threshold level

Maximum transmit power (P _H) EIRP dBm	Threshold level (TL) (see notes 1 and 2)				
23	-73 dBm / MHz				
NOTE 1: TL = -73 dBm/MHz + 23 - PH (assuming a 0dBi receive antenna and PH specified in dBm e.i.r.p.).					
NOTE 2: transmitter the CCA threshold level (TL) sh	all be equal or lower than -73 dBm/MHz at the				


NOTE 2: transmitter the CCA threshold level (TL) shall be equal or lower than -73 dBm/MHz at the input to the receiver (assuming a 0 dBi receive antenna).

5.5.1 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.9.2

5.5.2 TEST SETUP CONFIGURATION

UUT SOFTWARE AND FIRMWARE VERSION

Product	Model No.	Software/Firmware Version
Dualband Ceiling/Wall/Desktop Enterprise AP (802.11ac)	SS-AC1200-EU	v3.4.6.3

Companion Device information

Product	Brand	Model No.	Software/Firmware Version
802.11a/b/g/n/ac RTL8821AE Combo	REALTEK	RTL8821AE	2014/01/08
module		BT	2012.7.1231.2013

5.5.3 LIST OF MEASUREMENTS

UUT Operational		Limitation			
Mode	Applicable	The Maximum Channel Occupancy Time	The Minimum idle Period		
Load Based Equipment (CCA using 'energy detect')	Р	Max. COT< <u>13</u> ms [Max. COT=(13/32) × q ms.]	Between CCA = <u>20</u> us to q= <u>_32_</u> xCCA = 640us		

Note: The value of q is declared by the manufacturer.

Clause	Test Parameter	Remarks	Pass/Fail
4.9.2.1	Adaptive (Frame Based Equipment)	Not Applicable	NA
4.9.2.2	Adaptive (Load Based Equipment)	Applicable	Pass
4.9.2.3	Short Control Signalling Transmissions	Applicable	Pass

5.5.4 INTERFERENCE THRESHOLD LEVEL

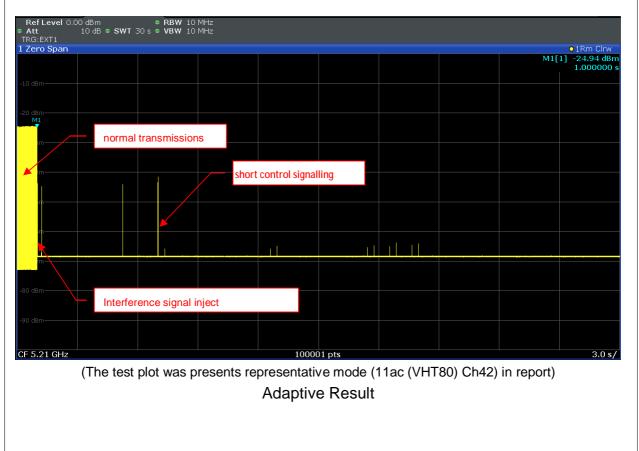
Detection Threshold Level

The maximum EIRP power is 22.7dBm and antenna gain is 3.97dBi. Detection Threshold level= -73dBm/MHz + 23 – Pout EIRP(22.7dBm) + G (3.97dBi) = -68.73dBm/MHz .

The interference signal level to the UUT is -68.73dBm/MHz.

Ref Level -2: Att PA	1.00 dBm Offs 10 dB = SW	set -1.00 dB ● F T 1 s ● V	RBW 1 MHz /BW 3 MHz Mo	ode Auto Sweep				
1 Frequency S	weep							o1Rm Max
							M1[1]	-68.88 dBm 5.1971520 GHz
-30 dBm								
-40 dBm								
-50 dBm								
-60 dBm								
-70 dBm				M1 Y	and any second and any any and a second			
		· /						
-80 dBm								
-90 dBm								
August of the second	i i ji ja se	a a complete and					and tracts with the state day of and	and data distant and the same fitted atom
-110 dBm								
CF 5.21 GHz			8001 pt	S	20	0.0 MHz/	Sp	an 200.0 MHz

Detection Threshold Level


5.5.5 TEST RESULT

5.5.5.1 ADAPTIVITY RESULT

OPERATING FREQUENCY BANDS AND MODE OF EUT

Operational Mode	Operating Frequency (MHz)	Test Result
802.11ac (VHT80)	5210	PASS

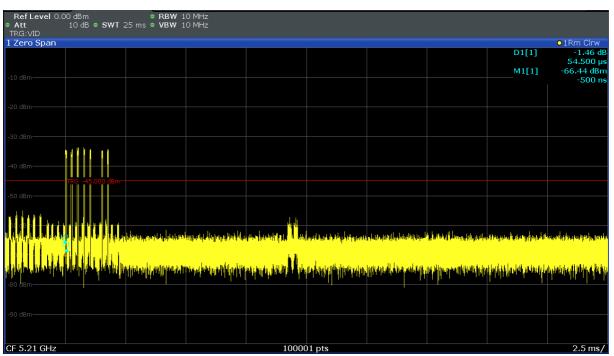
802.11ac (VHT80) Ch42 5210MHz

5.5.5.2 THE CHANNEL OCCUPANCY TIME RESULT

OPERATING FREQUENCY BANDS AND MODE OF EUT

Operational Mode	Operating Frequency Low Channel (MHz)	The Channel Occupancy Time (ms)	Minimum Idle Period (ms)	Test Result
802.11ac (VHT80)	5210	0.3	0.07	PASS

802.11ac (VHT80) mode CH42 5210MHz



5.5.5.3 SHORT CONTROL SIGNALLING TRANSMISSIONS RESULT

SHORT CONTROL SIGNALLING TRANSMISSION RESULT

The SCST limit is 2.5ms The SCST total on time is 54us*7=358us < SCST limit

The short control signalling transmission length

5.6 USER ACCESS RESTRICTIONS

5.6.1 DEFINITION

User Access Restrictions are restraints implemented in the RLAN to restrict access for the user to certain hardware and/or software settings of the equipment.

5.6.2 REQUIREMENT

Manufacturer provides declaration form to meet this requirement.

5.7 TRANSMITTER UNWANTED EMISSIONS OUTSIDE THE HIPERLAN BANDS

5.7.1 LIMITS OF UNWANTED EMISSIONS OUTSIDE THE HIPERLAN BANDS

Frequency Range (MHz)	Maximum power, ERP (dBm)	Bandwidth (kHz)
30 to 47	-36	100
47 to 74	-54	100
74 to 87.5	-36	100
87.5 to 118	-54	100
118 to 174	-36	100
174 to 230	-54	100
230 to 470	-36	100
470 to 862	-54	100
862 to 1000	-36	100
Frequency Range (GHz)	Maximum power, EIRP (dBm)	Bandwidth (MHz)
1 to 5.15	-30	1
5.35 to 5.47	-30	1
5.725 to 26	-30	1

5.7.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.5.2

Measurement				
Conducted measurement	Radiated measurement			
For Conducted measurement:				
The level of unwanted emissions shall be measured as their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation).				
Conducted measurement (For equipment with multiple transmit chains):				
Option 1: The results for each of the transmit chains for the corresponding 1 MHz segments shall be added and compared with the limits.				
Option 2: The results for each of the trans with the limits after these limits (number of active transmit chair	have been reduced by 10 × log10 (N)			

5.7.3 DEVIATION FROM TEST STANDARD

No deviation.

5.7.4 TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The test setup has been constructed as the normal use condition. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

5.7.5 TEST RESULTS

BELOW 1GHz WORST-CASE DATA

802.11a

	SPURIOUS EMISSION LEVEL				
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)	
98.20	Н	-73.89	-54.00	-19.89	
101.89	V	-65.14	-54.00	-11.14	
110.72	V	-65.95	-54.00	-11.95	
226.85	Н	-73.24	-54.00	-19.24	
479.98	Н	-72.87	-54.00	-18.87	
576.80	Н	-74.58	-54.00	-20.58	
599.89	Н	-71.51	-54.00	-17.51	
599.89	V	-75.68	-54.00	-21.68	
624.92	Н	-72.27	-54.00	-18.27	
625.02	V	-73.07	-54.00	-19.07	
660.14	V	-74.78	-54.00	-20.78	
682.75	V	-75.51	-54.00	-21.51	
726.79	Н	-74.63	-54.00	-20.63	
740.96	V	-75.14	-54.00	-21.14	
749.98	Н	-64.36	-54.00	-10.36	
749.98	V	-62.56	-54.00	-8.56	
787.82	V	-75.27	-54.00	-21.27	
788.89	Н	-75.51	-54.00	-21.51	
821.10	Н	-74.85	-54.00	-20.85	
826.53	V	-75.01	-54.00	-21.01	

802.11n (HT20)

SPURIOUS EMISS FREQUENCY RAN	100000 1000	OPERATI CHANNEI	- 18	
	SPUR	IOUS EMISSION LE	VEL	
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
36.02	V	-75.14	-36.00	-39.14
73.17	V	-67.73	-54.00	-13.73
101.89	V	-63.42	-54.00	-9.42
156.42	Н	-74.48	-36.00	-38.48
183.10	V	-80.49	-54.00	-26.49
225.69	V	-77.34	-54.00	-23.34
231.70	Н	-74.37	-36.00	-38.37
249.94	Н	-76.93	-36.00	-40.93
399.93	Н	-71.84	-36.00	-35.84
600.09	Н	-69.48	-54.00	-15.48
624.92	Н	-71.04	-54.00	-17.04
625.02	V	-73.74	-54.00	-19.74
749.98	Н	-63.45	-54.00	-9.45
749.98	V	-63.50	-54.00	-9.50
874.94	Н	-67.47	-36.00	-31.47
874.94	V	-70.15	-36.00	-34.15
949.84	V	-72.66	-36.00	-36.66
960.03	Н	-72.04	-36.00	-36.04
1000.00	Н	-67.28	-36.00	-31.28
1000.00	V	-67.83	-36.00	-31.83

ABOVE 1GHz WORST-CASE DATA

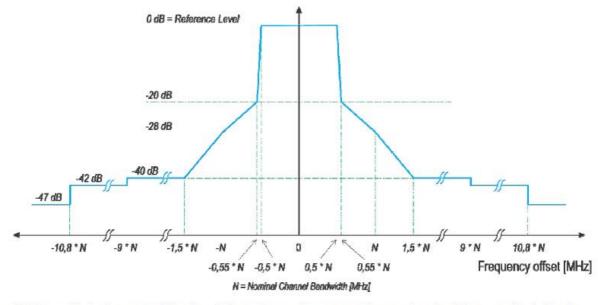
802.11a

SPURIOUS EMISSION FREQUENCY RANGE	1(H7 ~ 26(H7	OPERATING CHANNEL	48
--------------------------------------	--------------	----------------------	----

SPURIOUS EMISSION LEVEL					
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
	10480.00	Н	-51.09	-30.00	-21.09
	10480.20	V	-46.10	-30.00	-16.10
36	15719.97	Н	-56.42	-30.00	-26.42
	15720.30	V	-55.76	-30.00	-25.76
	20959.90	V	-57.28	-30.00	-27.28
	20959.92	Н	-56.45	-30.00	-26.45

802.11n (HT20)

SPURIOUS EMISSION FREQUENCY RANGE	1GHz ~ 26GHz	OPERATING CHANNEL	48
--------------------------------------	--------------	----------------------	----


SPURIOUS EMISSION LEVEL					
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)
	10480.60	V	-45.10	-30.00	-15.10
	10481.40	Н	-49.27	-30.00	-19.27
48	15720.03	Н	-56.00	-30.00	-26.00
40	15720.20	V	-55.89	-30.00	-25.89
	20959.90	V	-57.66	-30.00	-27.66
	20959.97	Н	-57.73	-30.00	-27.73

5.8 TRANSMITTER UNWANTED EMISSIONS WITHIN THE HIPERLAN BANDS

5.8.1 LIMITS OF UNWANTED EMISSIONS WITHIN THE HIPERLAN BANDS

The average level of the transmitted spectrum shall not exceed the limits given in the following figure:

NOTE: dBc is the spectral density relative to the maximum spectral power density of the transmitted signal.

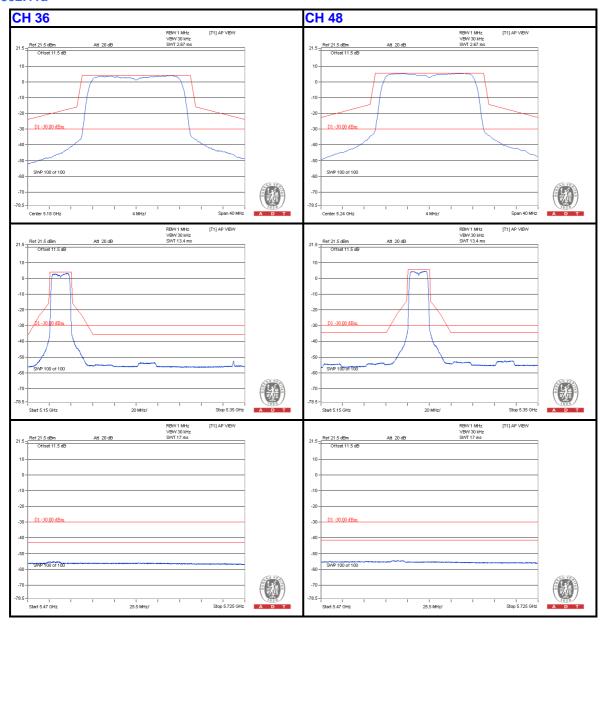
5.8.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.6.2

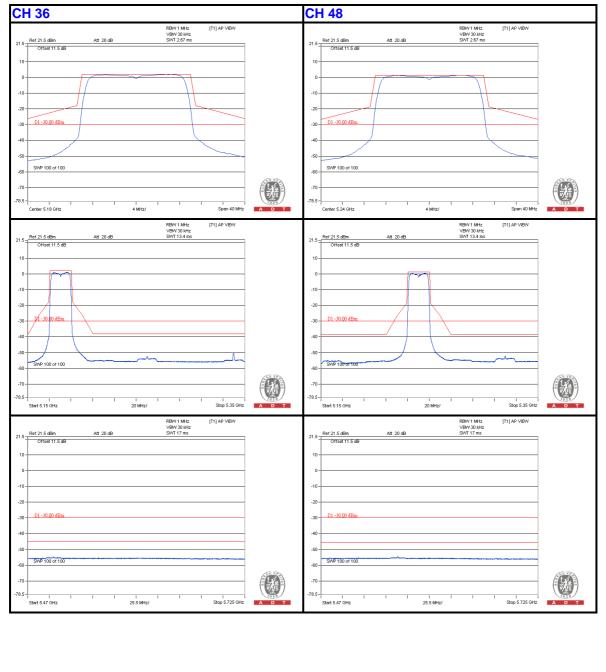
Measurement				
Conducted measurement				
Option 1: For equipment with continuous transmission capability				
Option 2: For equipment without continuous transmission capability				

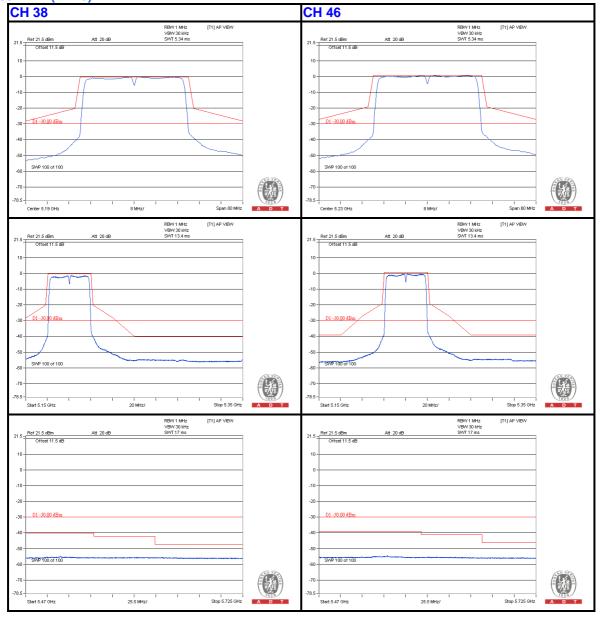
5.8.3 DEVIATION FROM TEST STANDARD

No deviation.

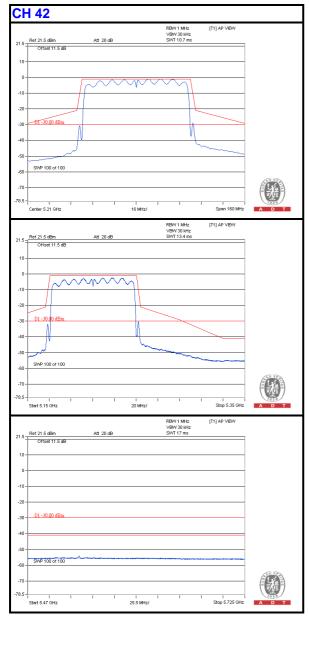

5.8.4 TEST SETUP

The test setup has been constructed as the normal test conditions. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.


5.8.5 TEST RESULTS



802.11n (HT20)



8<mark>02.11n (HT40)</mark>

802.11ac (VHT80)

RECEIVER PARAMETERS

5.9 RECEIVER SPURIOUS EMISSION

5.9.1 LIMITS OF RECEIVER SPURIOUS EMISSION

Frequency Band	Limit	Measurement Bandwidth
30MHz ~ 1GHz	-57dBm (e.r.p.)	100kHz
Above 1GHz ~ 26GHz	-47dBm (e.i.r.p.)	1MHz

5.9.2 TEST PROCEDURE

Reference to ETSI EN 301 893 V1.7.1 clause 5.3.7.2

liated measurement						
The level of unwanted emissions shall be measured as their power in a specified load (conducted spurious emissions) and their effective radiated power when radiated by the cabinet or structure of the equipment with the antenna connector(s) terminated by a specified load (cabinet radiation).						
Conducted measurement (For equipment with multiple transmit chains):						
Option 1: The results for each of the transmit chains for the corresponding 1 MHz segments shall be added and compared with the limits.						
ll be individually compared uced by 10 × log10 (N)						

5.9.3 DEVIATION FROM TEST STANDARD

No deviation.

5.9.4 TEST SETUP

- 1. For the actual test configuration, please refer to the related Item in this test report (Photographs of the Test Configuration).
- 2. The test setup has been constructed as the normal use condition. Controlling software (MP_TEST.exe [RTL819x 2.3]) has been activated to set the EUT on specific status.

5.9.5 TEST RESULTS

RX WORST-CASE DATA

SPURIOUS EMISSION FREQUENCY RANGE	30MHz ~ 1GHz	OPERATING CHANNEL	48

	SPURIOUS EMISSION LEVEL						
Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)			
72.98	V	-68.57	-57.00	-11.57			
92.38	V	-66.64	-57.00	-9.64			
102.47	Н	-72.84	-57.00	-15.84			
103.25	V	-63.44	-57.00	-6.44			
148.17	V	-83.45	-57.00	-26.45			
157.19	Н	-71.64	-57.00	-14.64			
166.99	Н	-69.43	-57.00	-12.43			
223.55	Н	-74.01	-57.00	-17.01			
226.85	V	-77.22	-57.00	-20.22			
390.04	Н	-72.05	-57.00	-15.05			
393.24	V	-75.83	-57.00	-18.83			
599.99	Н	-70.17	-57.00	-13.17			
625.02	V	-72.25	-57.00	-15.25			
749.98	Н	-65.28	-57.00	-8.28			
749.98	V	-63.93	-57.00	-6.93			
874.94	Н	-68.09	-57.00	-11.09			
874.94	V	-70.10	-57.00	-13.10			
959.93	Н	-71.64	-57.00	-14.64			
1000.00	Н	-67.99	-57.00	-10.99			
1000.00	V	-66.96	-57.00	-9.96			

RX ABOVE 1GHz DATA

SPURIOUS EMISSION LEVEL								
Channel	Frequency (MHz)	Antenna Polarization	Level (dBm)	Limit (dBm)	Margin (dB)			
48	10479.92	Н	-57.84	-47.00	-10.84			
	10479.93	V	-56.12	-47.00	-9.12			

6 PHOTOGRAPHS OF THE TEST CONFIGURATION TX / RX SPURIOUS EMISSION TEST

7 INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-30935343 Fax: 886-30935342

Hwa Ya EMC/RF/Safety/Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

---- END ----